Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants
نویسندگان
چکیده
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40-90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.
منابع مشابه
Bacterial diversity impacts as a result of combined sewer overflow in a polluted waterway
Newtown Creek is an industrial waterway and former tidal wetland in New York City. It is one of the most polluted water bodies in the United States and was designated as a superfund site in 2010. For over a century, organic compounds, heavy metals, and other forms of industrial pollution have disrupted the creek’s environment. The creek is also impacted by discharges from twenty combined sewer ...
متن کاملTemporal analysis of E. coli, TSS and wastewater micropollutant loads from combined sewer overflows: implications for management.
A combined sewer overflow (CSO) outfall was monitored to assess the impact of temporal mass loads on the appropriateness of treatment options. Instantaneous loads (mass per s) varied by approximately three orders of magnitude during events (n = 9 in spring, summer and the fall) with no significant seasonal variations. The median fraction of total loads discharged with the first 25% of the total...
متن کاملRemoval of micropollutants, facultative pathogenic and antibiotic resistant bacteria in a full-scale retention soil filter receiving combined sewer overflow.
Combined sewer systems collect surface runoff as well as wastewater of industrial and domestic origin. During periods of heavy rainfall the capacity of the sewer system is exceeded and the overflow is discharged into receiving waters without any treatment. Consequently, combined sewer overflow (CSO) is considered as a major source of water pollution. This study investigates the effectiveness of...
متن کاملWastewater micropollutants as tracers of sewage contamination: analysis of combined sewer overflow and stream sediments.
A sensitive method was developed to measure the sediment concentration of 10 wastewater micropollutants selected as potential sanitary tracers of sewage contamination and include: nonsteroidal anti-inflammatory drugs (acetaminophen - ACE and diclofenac - DIC), an anti-epileptic drug (carbamazepine - CBZ), a β-blocker (atenolol - ATL), a stimulant (caffeine - CAF), a bronchodilator (theophylline...
متن کاملFungal Based Treatment for Nitrogen and Phosphorus Decrease in Wastewater
Biological nutrient removal (BNR) technology can suffer poor performance or complete failure due to the fastidious nature of the bacteria used in the system. The bacteria involved necessitate strict operating conditions, multiple zones with one or more recycling lines, carbon source augmentation, and efficient aeration. For wastewater treatment plants receiving significant combined sewer overfl...
متن کامل